907 research outputs found

    A Practical Guide for Predicting the Stereochemistry of Bifunctional Phosphoric Acid Catalyzed Reactions of Imines.

    Get PDF
    Chiral phosphoric acids have become powerful catalysts for the stereocontrolled synthesis of a diverse array of organic compounds. Since the initial report, the development of phosphoric acids as catalysts has been rapid, demonstrating the tremendous generality of this catalyst system and advancing the use of phosphoric acids to catalyze a broad range of asymmetric transformations ranging from Mannich reactions to hydrogenations through complementary modes of activation. These powerful applications have been developed without a clear mechanistic understanding of the reasons for the high level of stereocontrol. This Account describes investigations into the mechanism of the phosphoric acid catalyzed addition of nucleophiles to imines, focusing on binaphthol-based systems. In many cases, the hydroxyl phosphoric acid can form a hydrogen bond to the imine while the P═O interacts with the nucleophile. The single catalyst, therefore, activates both the electrophile and the nucleophile, while holding both in the chiral pocket created by the binaphthol and constrained by substituents at the 3 and 3' positions. Detailed geometric and energetic information about the transition states can be gained from calculations using ONIOM methods that combine the advantages of DFT with some of the speed of force fields. These high-level calculations give a quantitative account of the selectivity in many cases, but require substantial computational resources. A simple qualitative model is a useful complement to this complex quantitative model. We summarize our calculations into a working model that can readily be sketched by hand and used to work out the likely sense of selectivity for each reaction. The steric demands of the different parts of the reactants determine how they fit into the chiral cavity and which of the competing pathways is favored. The preferred pathway can be found by considering the size of the substituents on the nitrogen and carbon atoms of the imine electrophile, and the position of the nucleophilic site on the nucleophile in relation to the hydrogen-bond which holds it in the catalyst active site. We present a guide to defining the pathway in operation allowing the fast and easy prediction of the stereochemical outcome and provide an overview of the breadth of reactions that can be explained by these models including the latest examples.We are grateful to the EPSRC for a DTA award (J.P.R.).This is the author final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.accounts.6b0005

    International chemical identifier for reactions (RInChI).

    Get PDF
    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases

    International chemical identifier for reactions (RInChI).

    Get PDF
    The Reaction InChI (RInChI) extends the idea of the InChI, which provides a unique descriptor of molecular structures, towards reactions. Prototype versions of the RInChI have been available since 2011. The first official release (RInChI-V1.00), funded by the InChI Trust, is now available for download ( http://www.inchi-trust.org/downloads/ ). This release defines the format and generates hashed representations (RInChIKeys) suitable for database and web operations. The RInChI provides a concise description of the key data in chemical processes, and facilitates the manipulation and analysis of reaction data

    Hunting Galaxies to (and for) Extinction

    Full text link
    In studies of star-forming regions, near-infrared excess (NIRX) sources--objects with intrinsic colors redder than normal stars--constitute both signal (young stars) and noise (e.g. background galaxies). We hunt down (identify) galaxies using near-infrared observations in the Perseus star-forming region by combining structural information, colors, and number density estimates. Galaxies at moderate redshifts (z = 0.1 - 0.5) have colors similar to young stellar objects (YSOs) at both near- and mid-infrared (e.g. Spitzer) wavelengths, which limits our ability to identify YSOs from colors alone. Structural information from high-quality near-infrared observations allows us to better separate YSOs from galaxies, rejecting 2/5 of the YSO candidates identified from Spitzer observations of our regions and potentially extending the YSO luminosity function below K of 15 magnitudes where galaxy contamination dominates. Once they are identified we use galaxies as valuable extra signal for making extinction maps of molecular clouds. Our new iterative procedure: the Galaxies Near Infrared Color Excess method Revisited (GNICER), uses the mean colors of galaxies as a function of magnitude to include them in extinction maps in an unbiased way. GNICER increases the number of background sources used to probe the structure of a cloud, decreasing the noise and increasing the resolution of extinction maps made far from the galactic plane.Comment: 16 pages and 16 figures. Accepted for publication in ApJ. Full resolution version at http://www.cfa.harvard.edu/COMPLETE/papers/Foster_HuntingGalaxies.pd
    • …
    corecore